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Abstract

The paper presents a general geometrically non-linear high-order theory of sandwich panels that takes into account
the high-order geometrical non-linearities in the core as well as in the face sheets and is based on a variational approach.
The formulation, which yields a set of rather complicated governing equations, has been simplified in two different
approaches and has been compared with FEA results for verification. The first formulation uses the kinematic relations
of large displacements with moderate rotations for the face sheets, non-linear kinematic relations for the core and it
assumes that the distribution of the vertical normal stresses through the depth of the core are linear. The second
approach uses the general formulation to the non-linear high-order theory of sandwich panels (HSAPT) that considers
geometrical non-linearities in the face sheets and only linear high-order effects in the core. The numerical results of the
two formulations are presented for a three point bending loading scheme, which is associated with a limit point behav-
ior. The results of the two formulations are compared in terms of displacements, bending moments and shear stresses
and transverse (vertical) normal stresses at the face—core interfaces on one hand, and load versus these structural quan-
tities on the other hand. The results have compared well with FEA results obtained using the commercial codes ADINA
and ANSYS.
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1. Introduction

A typical modern sandwich structure consists of two faces, made of metallic or composite laminated
materials, separated by a “soft” core that is usually made of low-weight and low strength non-metallic hon-
eycomb or polymeric foam. However, sandwich structures with such compliant/soft core materials are
notoriously sensitive to large deformations, indentations and failure by the application of concentrated
loads, at points or lines of support, and due to localized bending effects induced in the vicinity of points
of geometric and material discontinuities. The reason for this is that, although sandwich structures are well
suited for the transfer of overall bending and shearing loads, localized shearing and bending effects, as men-
tioned above, induce severe transverse normal and interfacial shear stresses. These stress components can
be of significant magnitude, and may in many cases approach or even exceed the allowable stresses in the
core material as well as in the interfaces between the core and the face sheets. In general, these localized
effects are associated with large displacements and moderate rotations in the face sheets and the core, also
denoted as geometrical non-linearities of the structure.

These geometrical non-linearities in a typical modern sandwich panel may consist of large displacements
in the face sheets and large displacements in the core, see Fig. 1a for partially distributed loads and Fig. 1b
for a concentrated load. However, since the core is located between the two face sheets its depth depends on
the displacement pattern of the face sheets and on the differences of the deflections between the upper and
the lower face sheets, see dp in Fig. 1. Notice that the core, which is a two-dimensional elastic medium,
exhibits large deformations in addition to an overall change of its height. However, one of the questions
that can be raised about the deformed core is whether the large deformations in the core are the result
of large rigid body motions of the upper and the lower face sheets (attached to the core), which implies that
the core actually remains in a linear state of deformations in spite of the large deformations, or the result of
large core deformations that are associated with non-linear kinematic relations. One of the major goals
of this research is to examine the effects of the existence and inexistence of the geometrical non-linearities
of the core, while the face sheets remain within the non-linear region, on the non-linear response of the
sandwich panel.
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Fig. 1. Deformed shapes of sandwich panels with large deformations and moderate rotations: (a) partially distributed load—Ilinear
core, (b) a three point bending loading scheme—linear/non-linear core.
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The classical analyses, linear or linearized models, see Allen (1969), Plantema (1966), Zenkert (1995),
Vinson (1999) and Noor et al. (1996), for traditional sandwich panels with anti-plane cores (such as metallic
honeycomb core), ignore the presence of localized effects due to the vertical flexibility of the core, and are in
fact unable to detect and quantify them. In general, the approaches used for bending, overall buckling and
vibration analyses, in most cases, are based on the “equivalent single layer” approach (ESL approach) in
which the layered structure (of beam, plate or shell type) is replaced by a solid homogeneous panel with
equivalent properties, see for example the Mindlin first-order theory (Mindlin, 1951), and Reddy’s high-
order theories (Reddy, 1984). Recently, Kardomateas and Huang (2003) and Huang and Kardomateas
(2002) have used the ESL approach to analyse a sandwich panel with very large deformations. In these re-
search works, Kardomateas and Haung have considered the core as a medium that only transfers shear
stresses between the face sheets. They have replaced the overall sandwich panel by an equivalent panel with
shear deformation capability, while the geometrical non-linearities have been ignored in their formulation.
Most of the aforementioned theories disregard the changes in the height of the core (the core compressibi-
lity) and the vertical strain through the depth of the core. Hence, in such approaches, the overall panel may
exhibit large displacements, while the core undergoes nearly rigid body motions with linear kinematic rela-
tions associated with small deformations.

A rational approach to investigate the effects of the vertical flexibility of the core including localized ef-
fects is to consider the sandwich panel as made of two face sheets and a core that are combined together
through equilibrium and compatibility. Linear analyses of localized effects in sandwich panels, especially in
the vicinity of localized and concentrated loads and supports, have been investigated by several authors
including: Thomsen using an elastic foundation approach (Thomsen, 1995) as well as the chapters on local-
ized effects in Zenkert (1995, 1997), linear elasticity solutions, see Kim and Swanson (2001) and by Frostig
using an enhanced model with the High-Order Sandwich Panel Theory (HSAPT) approach, see Frostig
et al. (1992). The HSAPT approach has been successfully applied to linear and nonlinear applications in
the field of sandwich structures by the authors as well as by others, such as: delamination at face—core inter-
faces in bending of unidirectional sandwich panels, see Frostig (1992); buckling analysis of sandwich panels
through linearization of the non-linear HSAPT equations, see Frostig and Baruch (1993); buckling analysis
of sandwich plates through the non-linear plate equations of the HSAPT, see Frostig (1998); experimental
validation and verification through photoelastic measurements, see Thomsen and Frostig (1997); analysis
of the non-linear behavior of sandwich panels with rigid and non-rigid interfaces including branching
behavior due to in-plane compressive loads, see Sokolinsky and Frostig (2000); special non-linear behavior,
see Sokolinsky et al. (2002); comparisons of results obtained using the high-order approach, theory of elas-
ticity and FEA results have revealed a good agreement including the correct location and regions of the
localized effects, see Swanson (1999); indentation resistance failure analysis using the high-order approach,
see Petras and Sutcliffe (1999, 2000); and recently an experimental and analytical study of four points bend-
ing, see Sokolinsky et al. (2003), in which the non-linear response is characterized experimentally. In a re-
cent paper Hohe and Librescu (2003) have presented a non-linear analysis of sandwich panels and shells
where the face sheets undergo large deformations with moderate rotations, and the core is assumed to re-
main in the linear regime with small deformations.

The literature survey reveals that the non-linear analysis of sandwich panels with incompressible cores,
assume that the core remains in the regime of small deformations, i.e. that linear kinematic relations ap-
plies, although the panel as a whole undergoes large deformations. In the three-layer approach, such as
the HSAPT or similar, the geometrical non-linearity is introduced only in the face sheets, while the core
is assumed to remain linear. Good correlation has been observed by comparison with FEA results, see
for example Swanson (1999), and experiments, see Sokolinsky et al. (2003), within the regime of small to
moderate class of deformations. However, using FEA modeling to simulate a realistic sandwich panel
including the very low elastic properties of the core, as compared with the face sheet, and very thin face
sheets is problematic due to the large displacement and distortions of the core elements, and in many cases
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the results obtained do not correlate well with reality. Hence, the development of a simplified analytical/
numerical approach to solve the problems, such as the non-linear HSAPT or similar, is a necessity. Thus,
the effect of the non-linearity of the core on the response should be investigated in order to verify the quality
and accuracy of such solutions.

The derivation of the general non-linear governing equations is based on the following restrictive
assumptions: the face sheets possess in-plane and bending rigidities; the faces and the core material undergo
large displacements with small strains and remain material-wise linear; the core is considered as a 2D linear
elastic continuum, where its height may change during deformation, its plane of section does not remain
plane after deformation, it possesses only shear and transverse normal stiffness, whereas the in-plane (lon-
gitudinal) normal stiffness is assumed negligible due to its low rigidity compared with that of the face sheets
(accordingly, the longitudinal normal stresses are assumed to be nil); and the loads are applied to the face
sheets only.

The accurate model that uses the non-linear kinematic relations of large displacements and moderate
rotation for the face sheets as well as the core yields a set of very complicated governing equations. The
lack of a general analytical solution of the core fields requires a simplified approach that has evolved into
two simplified models. Hence, the paper presents first the non-linear field equations of the accurate model
panel, in a concise form, follows by the two simplified models. In the first simplified one the core is assumed
to exhibits non-linear kinematic relations of the shear angle only, while in the second one the core under-
goes linear kinematic relations only which also coincide with the non-linear HSAPT approach. The two
models are compared numerically for a three point bending loading scheme. These results are compared,
for verification, with commercial FEA code results, obtained for a sandwich panel with an isotropic or
orthotropic foam cores and large displacements with large rotations. The paper ends with a summary
and conclusions.

2. General non-linear analysis-field equations

The mathematical formulation of the general non-linear formulation consists of derivation of the gov-
erning field equations. They are derived through the minimization of the total potential energy that consists
of the internal potential energy and the potential energy of the external loads. It reads:

/[25(U+ V)de=0 (1)

where U and V are the internal and the external potential energies, respectively, and é denotes the varia-
tional operator.
The first variation of the internal potential energy in terms of stresses and strains reads:

L pes(x) by/2
oU = / (Oxx08ry ) dv + / (Oxxp0rwp ) dv —|—/ / / (Te2e0V 100 + 022008 )dydz, dx (2)
Vi Ve 0 0 —

by/2

where o.,; and ¢, (j = ,b) are the longitudinal normal stresses and strains in the upper and the lower face
sheet, respectively; 7,.. and 7y,.. are the vertical shear stresses and shear strains in the core; o... and ¢... are
the normal stresses and strains in the vertical direction of the core; b,, is the width of the core;
cy(x) = ¢ + wy(x) — wix) is the height of the deformed core, where ¢ equals the height of the undeformed
core; wij = t,b) are the vertical displacements of the upper and the lower face sheets, respectively, see Fig.
2a; and L is the span of the panel. It should be noticed that the volume integral of the core is evaluated on
the deformed shape of the core, ¢y(x), which is affected by the vertical displacements of the upper and lower
face sheets.
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Fig. 2. Geometry, loads, internal and global stress resultants for deformed and undeformed core: (a) geometry, (b) external loads,
(c) global stress resultants, (d) stress resultants with a deformed core (non-linear core), (e) stress resultants with an undeformed core
(linear core).

The variation of the external work equals:

L Nc
oV =— / [nxtéua, + N Oltop + @, 0W; + G, OWp + MOW, . 4+ MpOWy . + Z (Ni,(suo, + Py ou,y,
0

i=0
o+ Prdw, + Pydws + MW, + Mipdwn ) dp(x — xa) | dr (3)

where u,;, and w{j = ¢, b) are the displacements in the longitudinal and vertical directions, respectively, of the
mid-plane of the face sheets; n,;and ¢.(j = ¢, b) are the in-plane external loads in the longitudinal direction and
the vertical distributed loads applied on the upper and lower face sheets, respectively; m{j = ¢,b) are the dis-
tributed bending moments acting on the various face sheets; N ;, P; and M ;(j = 1, b) are the external concen-
trated longitudinal and vertical loads and bending moment, respectively, applied at the upper and the lower
face sheets at the location x = x.; dp(x — x,;) is the Dirac delta function; N.. is the number of locations with
concentrated loads; w; .(j = t,b) is the slope of the vertical displacement of the upper and lower face sheets,
respectively. The geometry and sign convention for stresses, displacements and loads appear in Fig. 2a and b.




1448 Y. Frostig et al. | International Journal of Solids and Structures 42 (2005) 1443-1463

The kinematic relations including moderate deformations take the following form.
For the face sheets (j = t,b):

Exxj = Exxoj + Zijxj (4)
where the mid-plane inplane strains and curvatures read:
Exxoj = Uojx + sz"x/za X)ggj = —Wjxx (5)

where ., and y..(j = ¢,b) are the in-plane strains in the longitudinal direction of the mid-plane and the
curvature of the upper and the lower face sheets, respectively; z; is the vertical coordinate of each face sheet
measured downward from the mid-plane of each face sheet (see Fig. 2b), and ( )_, denotes a derivative with
respect to x.

The kinematic relations for the core read:

Vaze = Yoz (¥,2¢) + Weu (¥, 26) F Wer (3,26 )Wez (%, 26) + thex (X, 20 e, (¥, 2) (6)
1 2 1 2
Ezze = Wc,z(v ()C, Zc) + E Wc,z(‘ (X, Zc) + E Mc,z(‘ (X, Zc) (7)

where u.(x,z.) and w.(x,z.) are the longitudinal, and vertical deflections of the core, respectively, and z, is
the vertical coordinate of the core, measured downward from the upper interface (see Fig. 2b).
The compatibility conditions at the upper and the lower face—core interface, (j = ¢,b), read:
1

2 (_1)kdjwj~x

uc’(xvzc’j) = Uo; +

we(X,25) = w; (8)
where, k =0 when j=¢, and k =1 when j = b; z.,, = 0 at the upper interface and z., = c¢|(x) at the lower
interface (see Fig. 2a); dfj = t,b) are the thicknesses of the upper and lower face sheets and c¢y(x) is the
height of the core after deformation (see Fig. 2d).

The fields equations are derived through substitution of the kinematic relations, Egs. (4)—(7) into the var-
iation of the total potential energy, see Eq. (2), use of the stress resultants in the face sheets, see Fig. 2, and
finally the compatibility conditions and equilibrium requirements between the core and the face sheets at
their interfaces, see Eq. (8).

The equations for the face sheets read:

_ (;x N, (x)) + %bwr, (x) <C?x22 w, (x)> d; — byy0..1(x) (ai u(x, Zc)>

=) o)) = ) =0 o)

z.=0

() ) + (o)) = oo (et
g (o)) =300 (50 o (a0)) = (b)) = bt (gm0
) = 4~ Now) (5000 ) = 3 (50 )~ () ()
3ot (Bt oo ) (&)
0

5 )
- %bwazz,(x) (aax ( <£ te (X, Zc))

N
g
~_—
~—
S
I
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1 d? d d
— Ebwfb (x) 2" (x) )dy + by (x) % e + b, Tp(x) ot (x)

c

- (%m@)) t byt(x) = 0 (1)

)

1

S, (i;uob( ))—qzb—(%zvxxh(x)x ) (deMm ) %bw(%rb(x))db

T byt() <§x ()) by () + by (ai sz) (;x‘rb(x))di(;x—zzwb(xo
#(Em) 3o (e ) (a)) Mo (S ) s ()
gt (o)) (St (o te2)

o)y () dew) =0 (12)
2 wOzzp\X)Ap 62% Ue\ X, Z¢ e dxcs X -

where, 7(x) and ¢..(x)(j = t,b) are the shear and vertical normal stresses at the upper and the lower face—
core interfaces, respectively.
The field equations for the core equal:

b (L) (e ) — 2t (o)) — b etz
W axr X, Z¢ aZc UelX, z¢ wT X, Z¢ aanX Ue\X, Z¢ w GZCT X, Ze
0 0 0 0 o
—b, (a—zc r(x,zc)> (a uc(x,zc)> — b, (E)_ZC azz(x,zc)) (a—zcuc(x,zc)) - b,0..(x,z.) (a_zf uc(x, zc)> =0

1
db - 5 bwo-zzb (x)db

ze=cs(x) ze=c(x)

(13)
—b, <ai‘c(x,zc)> —b, (ai‘c(x,zc)) <£ch(x,zc)> —2b,1(x,z.) <6 626 (x, ZC)>
— b, <£t r(x,zc)> (aiwc(x,zc)> — b, (ai O-zz(x,zc)> —b, (ai O'zz(X,Zc)> <£ch(x,zc))
SRS ()
=0 (14)

The solution of field equations starts first with an analytical/numerical solution of the core stress and
displacements fields, and proceeds with the solution of the equations of the face sheets. Here, the field equa-
tions of the core appear as a set of very complicated non-linear partial differential equations with no known
general analytical closed-form solution. Hence, a simplified approach must be used instead.

In the first approach, the kinematic relations of the shear angle of the core are kept non-linear and in-
clude the effect of the vertical core displacements only. The height of the core is modified to include the
effects of the deformations of the upper and the lower face sheets. The distribution of the vertical normal
stresses through the depth of the core is assumed to be linear, following the non-linear high-order sandwich
panel approach (HSAPT).
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In the second simplified approach, the non-linear kinematic relations of the core are replaced by the linear
kinematic relations, and the upper limit of the integration through the depth of the core, see Eq. (2), is set
equal to the height of the undeformed shape of the core, c, see Fig. 2e. This simplification yields the non-linear
sandwich panel theory model (HSAPT), see Frostig and Baruch (1993).The quality of the simplified models is
measured through the theoretical fulfillment of overall equilibrium in each of the models and comparison with
FEA results obtained using ADINA, see Adina System (2003) and ANSYS, see Ansys ver. 7.1.

3. Simplified non-linear mathematical formulations
3.1. Non-linear core

The field equations for this case are based on the non-linear kinematic relations corresponding to mod-
erate rotations, see Egs. (4) and (5) (i.e. the von Karmann class of deformations), and take into account the
deformed height of the core, see Fig. 2d, to be used in Eq. (2). The non-linear kinematic relations for the
core are expressed through the shear angle only as follows:

Ve = Uez, (X, 20) + We x (x,z.) + Wex (X, Ze)We 2, (¥, 2c)

SZZL' = WL',ZC (x7 ZC)

(15)

The field equations are derived using the non-linear kinematic relations of the face sheets, Egs. (4) and (5),
the non-linear kinematic relations of the core, Eq. (15), the compatibility conditions, Eq. (8), and the var-
iations of the internal and the external energy, Egs. (2) and (3). Hence, after integrations by parts and some
algebraic manipulation they read:

For the upper and the lower face sheets:

. (%Nmm) By =0 (16)

(%’"f(")> - (%an(x)) (%w,(x)) — Neol) (i—iw:(x)) - (i—iMxxt(x)) —q,

— by, 1(x) (% w, (x)) — b0 (x) — %bw <% T,(x))d,

=0 (17)
- (%Nm(x)) — gy, + by Th(x) = 0 (18)

(Em) ~ g (&) (o) Voot (;C— w0 - (i—ZMmu))

d 1 d
+ b1 (x) (a Wp (x)) + b0 (x) — 3 b, <a T (x)) d,
-0 (19)
For the core:

—b, <§CT(X,ZL,)) =0 (20)
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b (gertnz ) = (ot ) (w2 ) - stz (% ()

0 0 0
— b, <azcr(x,zc)> (ach(x,zc)> — <azcazz(x,zc)>bw

=0 (21)

The first field equations of the core, Eq. (20), yields that the distribution of the shear stress through the depth
of the core is uniform, similar to the case of the linear core, see second simplified model ahead. It reads:

1(x,z.) = 1,(x) = 1 (x) = 7(x) (22)

The vertical displacement field of the core is determined from the second field equation of the core, see Eq.
(21). However, since a closed-form analytical solution is impossible, an approximate solution is sought by
assuming that the distribution of the vertical normal stresses is linear, as follows:

0.(x,z.) = 0(X)ze + 0.(x) (23)

where o(x) is a function that has to be determined through the overall vertical equilibrium of the deformed
core, see Fig. 2a, and o../x) is the vertical normal stress at the upper core—face interface.
The vertical equilibrium equation of the core considers as a whole reads:

D F. = 0u(x) = 0u(x) + 1(x) (% W (x)) — 1(x) (% w,(x)) + (x) (% Cs(x)>

(et + () (o)

=0 (24)

The unknowns o(x) and o..,(x) are determined through the solution of the distribution of the vertical dis-
placement, the compatibility conditions in the vertical direction at the upper and the lower face sheets (see
second equation in Eq. (8)) and the overall equilibrium in the vertical direction, Eq. (24). Hence, o(x) equals:

B 27(x) (%cs(x)) + (% I(x))cs(x)
a(x) = —
¢ (x)
The governing equations are derived through the use of linear constitutive relations (Hooke’s law) for the
face sheets and the core in the field equations, see Eqgs. (16)—(19).

The field equations have been solved using the multiple points shooting method along with the paramet-
ric and arc-length continuation methods, see Stoer and Bulirsch (1980) and Keller (1992). The solution pro-
cedure uses the following set of governing first-order differential equations for the case of a panel with
isotropic face sheets:

d

(25)

3o Ve () = = = but(@) (26)
%uo, (x) ZA&) - %Dw, (x)? (27)
Vel = =2 ey, — ) (% <x>> bur(x) — 4 E.Dtau()e, Wb, g,
(28)
€ M) = — 5 budit(@) + mx) — New()Dw,(x) + Vo) (29)
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C (@) = D) (30)
& D) = - ZZZ’(S‘)) 31)
S Newl) = =+ () (32)
%uob(x) - Z A:E;‘)) - %ow(x)z (33)
% Ven(x) = — Ef(;v) (x) Ei(:;’ ) 4 () Dy (x) — (% cs(x)> bur(x)

— 3 E.Dtau(x)e,(x)b, — g, (34)
% Moao() = N (WIDW4(x) — 5 bud(s) + () + Voo () (35)
L x) = D) (36)
om0 ‘”)
% 1(x) = E..Dtau(x) (38)
%Dtau(x) = (see Appendix A for details) (39)

where N,,; and M, (j = t,b) are the in-plane stress and bending moment resultants of each face sheet;
V.-{j = t,b) are the shear stress resultants in the upper and lower face sheets; 7(x) is the shear stress in
the core; w; and u,(j = t,b) are the vertical and mid-plane in-plane displacements of the face sheets;
EA; and EI; are the in-plane and flexural rigidities of the face sheets; E.. and G.,.. are the vertical modulus
of elasticity and the shear modulus of the core; b,,d{j = t,b) and ¢ are the width of the panel, the thick-
ness of the upper and lower face sheets and the height of the core, respectively; x is the longitudinal coor-
dinate of the sandwich panel. Reference is made to Fig. 2 for the adopted sign conventions and
coordinates. It should be noted that the slope of the shear stress, see Eq. (38), has been scaled with respect
to the modulus of elasticity of the core, E.., in order to achieve an efficient numerical scheme. Notice that
the details of the lengthy compatibility equation, Eq. (39), appear in Appendix A, for simplicity and
clarity.
The vertical normal stress field through the depth of the core reads:

(27(x) (L es(x) + (E(x))es(x))ze

cs(x)
12 (X)) (Ley(x) — (& ‘c(x))cs(x)2 + 2w (x)E.. — 2wy (x)E..
2 cs(x)

Gzz(-vaC) = -

(40)
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and the vertical normal stresses at the upper and the lower face sheet equal:
wi(x)E..  wy(x)E..

o) = o) (e ) + 5 (700 ) = 4 2
o) = o) () ) = 5 (1700 ut) = e (41)

cs(x) cs(x)

The vertical and the longitudinal displacements are derived using the non-linear kinematic relations of the
core, see Eq. (15), and by the adoption of isotropic linear constitutive relations. Hence, the vertical displace-
ment read:

1 (200 (e ) + (L 100)e, ()22

E..co(x)
1 (2607 (L e () + (7)) es(6) = 20 (@B + 2wy (x)Exe )2
* 2 E..cy(x)

Wc(x7zc) = -

+ wi(x) (42)

The distribution of the longitudinal displacement in the core has been derived analytically using linear con-
stitutive relations of an isotropic core, and the kinematic relations that appear in the first equation of Eq.
(15). The expression of the longitudinal displacement is complex and very lengthy, and for brevity it is omit-
ted. The explicit expression for the in-plane core displacement, however, has been used to derive Eq. (39),
which is equivalent to the compatibility condition at the lower face—core interface in the longitudinal direc-
tion, see the first equation in Eq. (8). Please notice that, in this case, the stress field in the core fulfills equi-
librium in the overall sense and not in the differential sense, i.e. Eq. (21) is not fulfilled.

In order to verify the quality of the solution the overall equilibrium equations of a deformed differential
segment are derived analytically. First, the overall in-plane and shear stress resultants as well as the bending
moment resultants are defined using the stress resultants in the face sheets and the core, see Fig. 2c and d.
They read:

NG(x) = Nxxt(x) + Nxxb(-x) (43)
Mg(x) = My (x) + M (x) — Ny (x) (c—l—%d,—l—%db—i—wb(x) —w,(x)) (44)
VG(X) = szt(x) + szb(x> + szc(x) (45)

where V.. = 1(x)b,c, and the subscript G refers to the term “global”.

The overall equilibrium equations are derived using the governing equations, Egs. (26)—(39). The overall
equilibrium equation of the summation of forces in the longitudinal directions equals the sum of Egs. (26)
and (32), and that of equilibrium in the vertical direction consist of the sum of Eqs. (28) and (34) and the
derivative of V... The overall moment equilibrium equation equals the sum of Egs. (26), (29) and (35) and
some algebraic manipulations. Hence, the overall equilibrium equations, assuming n,, =0 and n,, =0
equal:

d
aNG@C) =0 (46)
S Val) = g~ (@7)
d

aMG(X) = Vg (x) + mu(x) + my(x) (48)
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All the three equations are in accordance with the overall equilibrium requirements, see Fig. 2c. Accord-
ingly, this simplified model fulfills accurately the conditions of overall equilibrium in the full range of large
deformations with moderate rotations.

3.2. Linear core

In the second simplified model it is assumed that the face sheets undergo large deformations with mod-
erate rotations, i.e. the so called “intermediate” class of deformations, whereas the kinematic relations of
the core are assumed to be linear and equal to those corresponding to small deformations and small rota-
tions. It means that the face sheets are deformed, while the core is considered in its undeformed state, see
Fig. 2e. This approach coincides with the Non-Linear High-Order Sandwich Panel (NLHSAPT) approach,
and the set of the non-linear governing equations used for this analysis appears in Frostig and Baruch
(1993). Here, the upper limit of the integration of the core, see Eq. (2), changes into ¢ and the kinematic
relation of the core read:

Vxze = Uecz, (X7ZC) + Wc,X(xazL')

Ezz¢ = Wepz, ()C 7ZC)
The field equations, for this case, have been derived in a similar way to that of the previous case. The
equilibrium equations in the longitudinal direction at the upper and the lower face sheet are identical,

see Egs. (16) and (18). However, the equations of the equilibrium in the vertical directions of the upper
and the lower face sheets are different, see Eqgs. (17) and (19), and they read:

o) () ) = (b)) (om0 = () = (o)) = by
na(Se0)
0

(49)

_ (50)
— g, — Nxxy(x) (i—iw,,(x)) - <%Nxxh(x)> (%wh(x)) - ((‘lix—ZMxxb(x)> + (%mb(xo

+ b0z (x) — %bwdl, (ic ‘cb(x)>

—0 (51)

The equilibrium equations for the core are also partly different from those of the previous case. The core in-
plane equilibrium equations for the two cases, see Eq. (20), are identical, while the equation of vertical equi-
librium, see Eq. (21), is different and reads:

- <air(x,zc)> b, — (ai azz(x,zc)> b, =0 (52)

The solution of the field equations of the core yields that the distribution of the shear stresses through
the depth of the core is uniform as in the previous case, see Eq. (22). In addition, the distribution of the
vertical normal stresses is linear, similar to Eq. (23) but with different coefficients. It should be noticed that
here the stress field satisfies the conditions of equilibrium in the differential sense as well as in the overall
sense, which is in contrast with the previous case.

The set of governing equations are almost identical with those obtained for the case of a non-linear de-
formed core (previous case), but with some differences in the following equations. The shear force equations
for the upper and the lower face sheets are different, see Eqs. (28) and (34) and they read:
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d _ byE.owy(x) | byE.wi(x) 1

o Via(x) = — s + s - EEchtau(x)bwc —q, (53)
d wachb (x) wazc Wy (x) 1

o sz = - - _Ech wC — 4
Ly = Dok 20 L Dlau@bee - g, (54)

The compatibility equation for the undeformed core is much simpler then that of the previous case (see
Eq. (39) for the model with the non-linear core):

12(—u0,(x) + o (x) + 3 (¢ + d i) Dw,(x) 4 % (¢ + dp) Dwy(x) — Cg,(x))
3

%Dtau(x) =— (55)

C

The stress and the deformation fields in for the case of an undeformed core have been solved analytically
assuming an isotropic core with linear constitutive relations, and they read:

oul.2) = (5 ) EuDtau(y) o) = 0B (56)
() = OP0) _wa CDExe %cEchtau (x) (57)
0y (1) = 22 5) _CW’("))E“ - %cEchtau(x) (58)
we(x,2.) = G ez — Ezg) Dtau(x) + (1 - ZZ) wi(x) + Z‘””é’(x) (59)

(60)

where 0..(x,z.) are the distribution of the transverse normal stresses of the core; o..{x)(j = t,b) are the
transverse (vertical) normal stresses at the upper and the lower face—core interfaces. Reference is made
to Fig. 2 for sign conventions. The full derivation of Egs. (49)—(60) can be found in Frostig and Baruch
(1993).

The overall equilibrium equations at any section of the sandwich panel are derived following the proce-
dure that is described in the previous case, see Eqs. (36)—(41). Using the same overall stress resultant, see
Eqs. (43)—(45), yields the same overall equilibrium equations for the longitudinal directions, see Eq. (46),
and the for the vertical directions, see Eq. (47). The bending equilibrium equation is different than that
of the previous case with the deformed core, and it equals:

%Mg(x) = b, t(X)wp(x) — by t(x)w,(x) + m(x) + V(x) + mp(x) (61)

This equation, see Fig. 2c, does not fulfill the overall condition of moment equilibrium, and it includes
additional terms due to the shear stresses at the upper and the lower interfaces between the core and the
face sheets. This discrepancy is small when the difference between the vertical displacements of the upper
and the lower face sheets is small, and it is null when the vertical displacements are identical. Usually,
as along as the core does not undergo large indentations, i.e. w/{x) > wy(x), the discrepancy in Eq. (61)
is small or in other words, the overall equilibrium is retained with good approximation in spite of the the-
oretical discrepancy. Please notice, that in the previous case this equation is accurately fulfilled. It means
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that from an analytical point of view the simplification with the non-linear core is better then the model
with the linear one. How this discrepancy affects the predicted behavior, and how good the simplified
models when compared with numerical FEA results are, is presented next.

4. Three point bending—numerical example

The objective of presenting the numerical example of a sandwich panel loaded in three-point bending is
to investigate the accuracy of the simplified models as compared with a numerical FEA results obtained
with ADINA, ver. 8.1 (Adina System, 2003) and Ansys ver. 7.1. The sandwich panel consists of two face
sheets made of Kevlar with an equivalent modulus of elasticity of 27.4 GPa and a lightweight, low strength
core of Rohacell 50 with E..=52.5MPa and G,..=21.0MPa. The geometry of the panel appears in
Fig. 3a.
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Fig. 3. Geometry and results of models in face sheets and core-face interfaces along half length of panel at various load levels:
(a) geometry, (b) vertical displacements, (c) bending moments of face sheets, (d) shear stresses in core, (e) interfacial vertical normal
stresses at core—face interfaces. Legend: __t upper face/interface, --- b Lower face/interface, o oo Model with Deformed core (DefC).
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The numerical solutions of the simplified models have been achieved using the multiple-shooting point
method along with a parametric and an arc-length continuation procedure to reveal possible limit-point
behavior. The solution procedures only consider half of the panel length due to the symmetry at mid-span.

The results in the form of displacements, bending moments, core shear stresses and vertical normal stres-
ses at the face—core interfaces along the half length of the panel corresponding to the two simplified formu-
lations are presented at different load levels. Firstly, at a load level in the linear state, with P,; = 1.1kN.
Secondly deep into the non-linear regime, at a load level below the limit point, with P, = 1.351 kN, with
a deflection that equals that of the limit point due to ADINA. Thirdly, at the limit point, P, = 1.423kN.
The results are displayed in Fig. 3. The results of the two simplified model are almost identical in both the
linear and non-linear regimes. At the limit point load level some differences between the two models are
observed, but they are small. The overall equilibrium requirements, in accordance with Egs. (43)—(45), have
been used to quantify the accuracy and quality of the two models. In the simplified model with the de-
formed core, all three equilibrium requirements have been accurately fulfilled, at all load levels, while in
the case of the undeformed core the axial and shear force conditions have been accurately been fulfilled
at all load levels, while the overall bending moment condition is fully fulfilled only at load levels below
the limit point load. At the limit point there is a discrepancy in the overall bending moment but it is rather
small.

The FEA model and its deformed shape using ADINA, see Adina System (2003), appears in Fig. 4. The
modeling is based on the assumption of an isotropic core with E,.= E,. = 52.5MPa and G,.. = 21.0MPa
with the option of large deformations and large rotations. The limit point load of the ADINA run equals
1415.5N. In the Ansys run an orthotropic core has been used with E..=52.5MPa, E..= E../10 and
G,.. = 21.0MPa with the option of large deformations and large rotations. The limit point in this case
is 1370.4N.

The FEA analyses include models prepared in ADINA and in ANSYS, ver. 7.1. The ANSYS code has
been used due to its widespread applications in the sandwich structures industry. The FEA models consist
of a sandwich panel with an isotropic or orthotropic core, where its longitudinal rigidity is considered or
reduced and with the large deformation option. Half and full length panels have been considered with iden-
tical results. The ratio of 1/500 between the modulus of elasticity of the core to that of the face sheets lead to
numerical difficulties in ANSYS and ADINA. The low modulus of elasticity of the core causes large dis-
tortions in the core elements, which are beyond the numerical capabilities of ordinary elements and here
has required the use of special elements with special options.

The ANSYS model uses solid elements for the face sheets and the core, with 8 nodes or a 4 node spe-
cial element (solid plane 82). The eight nodes element stiffens the panel and fails to detect the limit point

Fig. 4. Finite element model and its deformed shape due to Adina.
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behavior, while the special element with four nodes has succeed to detect the limit point behavior but only
for an orthotropic core where its modulus of elasticity in the longitudinal direction is assumed to be a tenth
of that in the vertical direction. The value of the load at the limit point is about 1370.4 N. The model with
four nodes consists of a very fine mesh that includes 8 elements through the thickness of each face sheet,
and 19 elements through the thickness of the core. The analysis suffered from numerical instabilities and
poor convergence caused by the large distortions in the elements of the core.

The ADINA model consists of a very fine mesh with 2D elements of nine nodes for the core and the face
sheets, see Fig. 4a. This FEA model has detected the limit point behavior for the isotropic and orthotropic
core, but with numerical difficulties caused by the large distortions of the elements of the core, which in
some runs causes penetration of the loaded face sheet into the core.

Hence, the two FEA runs, for this particular case of a sandwich panel with a “soft” core, are associated
with numerical difficulties that require a very experienced user with a large background and experience with
non-linear FEA modeling.

The load versus the vertical displacement at the mid-span appears in Fig. 5. The results include the ver-
tical displacements at the lower face sheets of the two simplified models that are cut off at 1/10th of the
beam span, and the vertical displacement of the upper face sheet as obtained from the FEA runs. The
load—displacement curve of the simplified models exhibits limit point behavior at a load level of 1423 N
when the displacement is extended to beyond 1/10th of the beam span. The results of the two simplified
models almost coincide through the entire range of results, even deep into the non-linear regime. The
FEA results of ANSYS and ADINA, and those of the simplified models, are nearly identical through
the entire range, except in the vicinity of the limit point. The displacements in the simplified models are
larger than those of the FEA results, but with almost the same limit point load level. In the simplified mod-
els, the limit point load level equals 1423 N, while prediction of ADINA is 1415.5N and that by ANSYS is
1370.4N. Thus the limit point loads predicted by the simplified models and the FEA simulations are almost
identical, while the displacements of the simplified models are much larger than those of the FEA, see
Fig. 5. This discrepancy in the displacements is a result of the very low rigidity of the sandwich panel in
the vicinity of the limit point. The behavior of the sandwich panel in the vicinity of the limit point load
is attributed to the buckling of the upper compressed face sheet, and to the loss of the composite action
of the sandwich panel, i.e the inability to increase the compressive and tensile forces in the upper and
the lower face sheets and the shear stresses in the core. Hence, the result is a sandwich panel with a very
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Fig. 5. Load versus mid-span displacement of simplified models and Adina. Legend: __t upper face, --- b Lower face, o oo Model with
Deformed core (DefC).
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low bending resistance that yields large bending moments and large deformations in the face sheets and in
the panel as a whole for very small changes in the external load. The external load, at this stage, is resisted,
mainly, through the bending resistance of each of the faces independently. Part of the load is transferred to
the lower face sheet, mainly through vertical normal stresses in the core in the vicinity of the load, which
leads to very large displacements. Please notice that, in the vicinity of the limit point, the displacements pat-
tern of the two face sheets is almost identical.

A comparison between the two simplified models of the load versus the bending moments, the axial
stress resultants in the face sheets, the shear stresses in the core and the interfacial vertical normal stresses
at the upper and the lower face—core interfaces appears in Fig. 6. The results reveal that the two simplified
models yield almost identical results with minor discrepancies.

The stress and displacements distributions in the core material at the support and at mid-span reveal
some differences between the two models, see Fig. 7. Notice that the results for the case with the deformed
core are drawn on the deformed height of the core. The results are described at the previously mentioned
load levels, see Figs. 3 and 5. The distributions at the left support include the vertical normal stresses, the
vertical and the longitudinal displacements. The largest discrepancy occurs at the limit point load level in
the longitudinal displacement plot. At mid-span, see Fig. 7a, and b,, the discrepancies between the two
models is significant for the vertical normal stresses at the limit point load level. Here, the vertical interfacial
stresses, in the case of the undeformed core, are in tension at the lower face—core interface, while they are
almost zero in the other cases. In all other case, when the load is smaller than the limit point load level, the
two approaches yield almost identical results with very small discrepancies.
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Fig. 6. Non-linear response curves, load versus extreme absolute structural quantities, of the simplified models: (a) bending moments
and (b) inplane forces in faces, (c) shear stress in core, (d) interfacial vertical normal stresses at face—core interfaces. Legend: __t upper
face/interface, --- b Lower face/interface, o oo Model with Deformed core.
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5. Summary and conclusions

The governing equations of a sandwich panel, which has a transversely flexible core with negligible flex-
ural rigidity, including large displacements and moderate rotations in the face sheets and the core, are pre-
sented using a variational approach. In this approach the sandwich model is described through two face
sheets with in-plane and flexural rigidities, whereas the core is considered as a 2D elastic continuum that
undergoes large displacements with moderate rotations. The formulation takes into account that the core
is located between two face sheets that undergo large displacements, which change the height of the core
and affects the volume of the core. This phenomenon is included in the variational formulation through
the definition of the limits of the volume integral of the core. The resulting governing equations of the core
are rather complex, and the stress and displacements fields in the core are described through a set of non-
linear partial differential equations without a general analytical solution.
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Two simplified models have been adopted due to their ability to analytically describe the stress and the
deformations fields in the core. The first model takes into account the deformed core and uses simplified
non-linear kinematic relations while and the other one assumes that the core is undeformed and its kine-
matic relations are linear. Their accuracy is measured through the theoretical fulfillment of the overall equi-
librium at any section throughout the length of the panel. The two models have been solved using the
multiple points shooting method along with the parametric and the arc-length method. At all load levels,
the two models yield almost identical results and the largest discrepancy occurs only in the vicinity of the
limit point load level. However, the computer time required for the solution of model with the deformed
core is ten times that of the undeformed core.

The models have been verified through comparison with FEA results expressed in terms of load versus
mid-span displacement of the loaded face sheet of a sandwich panel loaded in a three point bending scheme.
The ADINA FEA model consists of an isotropic core while the ANSYS model included a reduced modulus
of elasticity in the longitudinal direction. The FEA runs are associated with numerical difficulties and poor
convergence as a result of the large distortions that the finite elements of the core undergo in the vicinity of
the limit point. The limit point loads obtained for all four cases are almost identical and very close to each
other, while the displacements of the simplified models are much larger then those of the FEA ones. The
curves of loads versus displacement of the simplified models are very similar to those of the FEA runs
up to the limit point load. In the vicinity of the limit point load the simplified models exhibit larger displace-
ment as a result of the null flexural rigidity of the core. It is important to notice that, at the limit point load
level, the sandwich panel looses its composite action, as a result of the buckling of the compressed face
sheet, and its flexural resistance drops to that of the isolated face sheets in the case of the simplified models,
and to that of the isolated face sheets and the isolated core in the case of the FEA models. At this stage, in
the simplified model, the core behaves more as a Winkler type of elastic foundation, in the vicinity of the
load, which distributes the external load between the two face sheets. In the case of an isotropic or ortho-
tropic core used in the FEA models, the deformations in the vicinity of the limit point are smaller as com-
pared with those with a core that has no flexural rigidity.

The comparison between the simplified models and the FEA models reveals that the simplified model,
with the undeformed core, is accurate through the entire loading range up to the limit point load level,
and that it detects the limit point load correctly. The flexural rigidity of the core contributes to the resist-
ance of the structure only when loss of the composite action occurs. Thus, in the vicinity of the limit point
load level, the displacements of the simplified model are larger then those obtained with the FEA models.
The simplified model is not associated with numerical instabilities and detects the limit point load flaw-
lessly. Therefore, the use of a simplified model of the high-order theory assuming an undeformed core is
more than justified in the analyses of sandwich panels with a “soft” core even when the sandwich panel
undergoes large displacements with moderate rotations.
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Appendix A. Compatibility equation of first simplified approach—non-linear core
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